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Abstract—Medical image segmentation is of great importance in clinical diagnosis, treatment planning, and disease monitoring.
However, obtaining high-quality annotated medical image data is costly and time-consuming, making semi-supervised learning an
effective solution to this problem. In recent years, the Bidirectional Copy-Paste (BCP) method [1] has shown excellent performance in
semi-supervised learning for medical image segmentation tasks. Attention mechanisms are a powerful technique that can improve
model segmentation accuracy by adaptively focusing on important parts of an image. However, applying attention mechanisms in the
computer vision (CV) field faces challenges, mainly due to the large amount of data and computational resources required for training
and the high demand for labeled data. In this study, I trained the Swin-Unet [2] network on the ACDC dataset based on the BCP
method. Swin-Unet combines the attention mechanism of the Swin Transformer [3] with the segmentation architecture of Unet, aiming
to improve the segmentation performance of cardiac MRI images. By using pretrained models, various dropout techniques, and weight
decay, I significantly enhanced the model’s performance. Experimental results show that my method achieves excellent results across
multiple evaluation metrics, demonstrating the effectiveness of applying pure attention networks in semi-supervised learning. This
research not only advances the development of medical image segmentation technology but also provides beginners with an
opportunity to quickly grasp the basic concepts and training techniques in the relevant field.

Index Terms—Compueter Vision, Deep Learning, Medical Image Segmentation, Semi-Supervised Learning
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1 INTRODUCTION

M EDICAL image segmentation is a critical task in clini-
cal diagnosis, treatment planning, and disease moni-

toring. However, several challenges hinder the development
and deployment of effective segmentation models:

1) Scarcity of Annotated Data: The annotation pro-
cess for medical images requires expert knowledge,
making it time-consuming and expensive.Obtaining
a large amount of high-quality annotated data is
challenging, which limits the application of fully
supervised learning methods.

2) Data Imbalance: Medical image datasets often suf-
fer from class imbalance, where certain lesions or
tissue types are underrepresented. This imbalance
can cause models to bias towards majority classes
during training, negatively impacting their perfor-
mance on minority classes.

3) Complexity and Diversity: The anatomical struc-
tures and pathological features in medical images
are complex and diverse, with significant variations
between patients. This complexity requires models
to have high robustness and generalization capabil-
ities to accurately segment different types of tissues
and abnormalities.

Recent advancements in semi-supervised learning have
shown promise in addressing these challenges.

To overcome the scarcity of annotated data, semi-
supervised learning methods leverage a small amount of
labeled data along with a larger set of unlabeled data to
improve model performance. These methods include tech-

niques such as consistency regularization, pseudo-labeling,
and self-training.

The BCP method, a subset of semi-supervised learn-
ing, enhances labeled datasets by incorporating informa-
tion from unlabeled data through bidirectional copy-paste
techniques. This augmentation improves data diversity and
model accuracy without requiring extensive labeled data.

In addition, attention mechanisms have become a trend
in computer vision. They enable models to focus on relevant
image regions, enhancing feature capture and performance.
These mechanisms integrate global and local context, im-
proving segmentation accuracy. They seamlessly integrate
into neural network architectures like CNNs and trans-
formers, making them versatile across tasks and domains.
By highlighting important image regions, attention mech-
anisms aid model interpretation and validation. They also
enhance efficiency by directing resources to critical areas,
leading to faster inference and reduced computational costs.

In this research, I explore the application of the BCP
method to train the Swin-Unet model on the ACDC dataset.
Swin-Unet, which integrates the Swin Transformer’s atten-
tion mechanism with Unet’s segmentation architecture, aims
to enhance cardiac MRI image segmentation. my findings
suggest that employing pure attention networks in semi-
supervised learning is a valuable endeavor, providing in-
sights and techniques essential for advancing medical image
segmentation.
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Fig. 1: Inputs to the Student network are derived from the combination of two labeled and two unlabeled images using the
proposed bidirectional copy-paste method. The supervisory signal for the Student network is created by merging ground-
truths and pseudo-labels generated by the Teacher network, facilitating robust supervision.

2 RELATED WORK

2.1 Bidirectional Copy-Paste

2.1.1 Mean Teacher

The BCP method is based on the Mean Teacher method,
which is a popular approach in semi-supervised learning. It
works by maintaining two models: a student model and a
teacher model.

The student model is the primary model that is trained
directly on the labeled data. It learns to make predictions
based on the given input data and is updated using stan-
dard backpropagation techniques. The teacher model serves
as a guide for the student model. The parameters of the
teacher model are not updated through backpropagation.
Instead, they are updated as an exponential moving average
(EMA) of the student model’s parameters. This means that
at each training step, the teacher model’s parameters are a
weighted average of its previous parameters and the current
parameters of the student model.

2.1.2 BCP Training Steps

The BCP framework employs two networks: a Teacher
network (Ft) and a Student network (Fs). A diagram illus-
trating this architecture is provided in Fig. 1. The Student
network, parameterized by Θs, is optimized using stochastic
gradient descent (SGD). Conversely, the Teacher network,
parameterized by Θt, is updated through the exponential
moving average (EMA) of the Student network’s parame-
ters, ensuring stability and smoothness in training.

The training strategy is divided into three steps:

1) Pretraining: Initially, the model is pretrained using
only labeled data.

2) Pseudo-Label Generation: The pretrained model
is then used as the Teacher network to generate
pseudo-labels for the unlabeled data.

3) Parameter Updates: In each iteration, the Student
network’s parameters Θs are optimized using SGD,
and subsequently, the Teacher network’s parameters
Θt are updated using the EMA of the Student pa-
rameters Θs.

The BCP technique involves copy-pasting between pairs
of images to maintain input diversity. A zero-centered mask
M is generated to indicate whether a voxel comes from
the foreground or background image. This mask helps in
creating two new composite images:

Xin = X l
j ⊙M +Xu

p ⊙ (1−M) (1)

Xout = Xu
q ⊙M +X l

i ⊙ (1−M) (2)

Here, X l
i and X l

j are labeled images, while Xu
p and Xu

q

are unlabeled images. The element-wise multiplication (⊙)
ensures that different regions of the images are combined,
preserving input diversity.

To train the Student network, supervisory signals are
generated using the BCP operation. The Teacher network
generates probability maps Pu

p and Pu
q for the unlabeled

images Xu
p and Xu

q . Initial pseudo-labels are derived from
these probability maps, which are further refined by select-
ing the largest connected component to remove outliers.

The pseudo-labels and ground truth labels are bidirec-
tionally copy-pasted to generate supervisory signals:

Yin = Y l
j ⊙M + Y u

p ⊙ (1−M) (3)

Yout = Y u
q ⊙M + Y l

i ⊙ (1−M) (4)

These signals are used to supervise the Student network’s
predictions on Xin and Xout.

Each input image comprises both labeled and unlabeled
components. The loss functions for Xin and Xout are:

Lin = Lseg(Qin, Yin ⊙M) + αLseg(Qin, Yin ⊙ (1−M)) (5)
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Lout = Lseg(Qout, Yout⊙(1−M))+αLseg(Qout, Yout⊙M) (6)

where Lseg is a combination of Dice loss and Cross-Entropy
loss, and α controls the contribution of unlabeled image
pixels.

The overall loss Lall = Lin + Lout is used to update the
Student network parameters via SGD. The Teacher network
parameters are then updated using the EMA of the Student
parameters.

2.1.3 Advantages

The BCP method significantly enhances model robustness
and performance through bidirectional data augmentation,
especially in scenarios with limited labeled data. This ap-
proach effectively bridges the gap between labeled and un-
labeled data distributions, promoting better generalization
and model adaptability.

2.2 Swin-Unet

2.2.1 Swin Transformer

When applying Transformer to the field of image process-
ing, there are two major challenges related to the attention
mechanism in computer vision (CV):

• Scale Variation: Visual elements in images vary
significantly in scale, unlike word tokens in text,
making fixed-size token processing unsuitable for
vision tasks.

• High Resolution: Images have much higher resolu-
tion than text, leading to high computational com-
plexity for dense predictions when using traditional
Transformer models, which scale quadratically with
the number of tokens.

The Swin Transformer is a novel vision Transformer
designed to address specific challenges in adapting Trans-
former models from natural language processing to com-
puter vision tasks.

The important structures of Swin Transformer are as
follows:

1) Shifted Windows: Instead of global self-attention,
Swin Transformer computes self-attention within
non-overlapping local windows, which reduces
computational complexity to linear with respect to
image size. Shifted windows between consecutive
layers ensure cross-window connections, enhancing
modeling power.

2) Patch Partitioning and Embedding: The input im-
age is split into non-overlapping patches, which are
then linearly embedded into a higher-dimensional
space to form the input tokens.

3) Patch Merging and Downsampling: Subsequent
stages in the model involve patch merging layers
that reduce the number of tokens and downsample
the resolution, maintaining computational efficiency
while increasing the feature dimensionality.

The structure diagram of a pair of Swin Transformer
Block is shown in Fig. 2. The computation process of a pair
of Swin Transformer Block is as follows:

Fig. 2: Two Successive Swin Transformer Blocks

1) Window-based Multi-head Self-Attention (W-
MSA):

ẑl = W-MSA(LN(zl−1)) + zl−1

2) Multi-layer Perceptron (MLP):

zl = MLP(LN(ẑl)) + ẑl

3) Shifted Window-based Multi-head Self-Attention
(SW-MSA):

ẑl+1 = SW-MSA(LN(zl)) + zl

4) Multi-layer Perceptron (MLP):

zl+1 = MLP(LN(ẑl+1)) + ẑl+1

where ẑl and zl denote the output features of the
(S)WMSA module and the MLP module for block l, re-
spectively; W -MSA and SW -MSA denote window-based
multi-head self-attention using regular and shifted window
partitioning configurations, respectively.

Standard global self-attention computes relationships
between all token pairs, leading to quadratic complexity
, shown in Eq. 7. In contrast, Swin Transformer computes
self-attention within local windows, reducing complexity to
linear, shown in Eq. 8.

Ω(MSA) = 4hwC2 + 2(hw)2C (7)

Ω(W-MSA) = 4hwC2 + 2M2hwC (8)

Where h and w represent the height and width of the input
image, respectively, while C denotes the dimensionality
of the token embeddings. M corresponds to the size of
the local window used in Swin Transformer’s self-attention
mechanism.

2.2.2 Swin-Unet Structure
The overall architecture of the Swin-Unet is presented in Fig.
3.

In the encoder phase, the input medical images are di-
vided into non-overlapping patches of size 4×4. Each patch,
with a feature dimension of 4× 4× 3 (representing the im-
age’s RGB channels), undergoes transformation through a
linear embedding layer into an arbitrary dimension denoted
as C . These transformed patch tokens then pass through
multiple Swin Transformer blocks and patch merging layers
to generate hierarchical feature representations. The patch
merging layer facilitates downsampling and dimensional-
ity increase, while the Swin Transformer block focuses on
learning feature representations.
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Fig. 3: The architecture of Swin-Unet, which is composed of encoder, bottleneck, decoder and skip connections. Encoder,
bottleneck and decoder are all constructed based on swin transformer block.

The decoder, inspired by Unet, is symmetrically de-
signed with Swin Transformer blocks and patch expanding
layers. Context features extracted from the encoder are
fused with multiscale features through skip connections to
counteract the loss of spatial information due to downsam-
pling. Unlike the patch merging layer, a patch expanding
layer is dedicated to upsampling. It reshapes feature maps
of adjacent dimensions into larger feature maps with 2×
upsampling in resolution. Finally, the last patch expanding
layer performs 4× upsampling to restore the feature maps’
resolution to the input level (W ×H), followed by a linear
projection layer to produce pixel-level segmentation predic-
tions.

3 THE PROPOSED METHOD

To overcome the limitations of traditional CNNs and to
facilitate effective training of attention networks, I utilized
the BCP method to train the Swin-Unet network.

Traditional CNNs face constraints such as limited re-
ceptive fields, spatial invariance, vanishing gradients, and
semantic gap issues. Additionally, attention mechanisms
can address these limitations by selectively focusing on
relevant image regions. Conversely, attention networks en-
counter challenges related to computational complexity, in-
terpretability, training instability, and potential overfitting.
Therefore, my choice to employ the BCP method aimed
at mitigating these limitations and improving the overall
performance and robustness of the Swin-Unet model in
medical image segmentation tasks.

4 EXPERIMENT

4.1 Dataset

For my experiments, I used the ACDC (Automated Cardiac
Diagnosis Challenge) dataset, which is an open dataset re-
leased for the ACDC competition. This dataset contains 100
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MRI images, and expert annotations for the right ventricle,
myocardium, and left ventricle structures.

In this experiment, I divided the dataset into 70 images
for training, 20 images for testing, and 10 images for valida-
tion. Each 2D image has a size of 224×224 pixels. To facilitate
training, the 100 3D images have been resliced into 1700 2D
images.

4.2 Performance Measures
4.2.1 DSC
The Dice Similarity Coefficient (DSC), also known as the
Dice score or Dice index, is a statistical tool used to gauge
the similarity between two sets of data. In the context of im-
age segmentation, DSC is commonly employed to evaluate
the performance of segmentation algorithms by comparing
the overlap between the predicted segmentation and the
ground truth. The Dice coefficient is defined as:

DSC =
2|A ∩B|
|A|+ |B|

(9)

where A is the set of pixels in the ground truth segmen-
tation, B is the set of pixels in the predicted segmentation,
A∩B is the number of pixels common to both sets, |A| and
|B| are the number of pixels in each set, respectively.

4.2.2 Jaccard
The Jaccard Index, also known as the Intersection over
Union (IoU), is a commonly used metric in image segmen-
tation to evaluate the accuracy of a predicted segmentation
against the ground truth. It measures the similarity and
diversity of sample sets and is defined as the size of the
intersection divided by the size of the union of the sample
sets. The Jaccard Index J is given by:

J(A,B) =
|A ∩B|
|A ∪B|

(10)

where A is the set of pixels in the ground truth segmen-
tation, B is the set of pixels in the predicted segmentation,
A∩B is the number of pixels common to both sets, |A∪B|
is the number of pixels in either set (i.e., the union of both
sets).

4.2.3 95HD
The 95th Percentile Hausdorff Distance (95HD) is a met-
ric used to measure the similarity between two sets of
points, which is particularly useful in evaluating image
segmentation algorithms. It is an adaptation of the Haus-
dorff Distance (HD) that provides robustness to outliers by
focusing on the 95th percentile of the distances rather than
the maximum distance. The Hausdorff Distance H(A,B) is
defined as:

H(A,B) = max

(
sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(b, a)

)
(11)

where d(a, b) is the Euclidean distance between points a
and b, sup denotes the supremum (or least upper bound),
inf denotes the infimum (or greatest lower bound).

The 95th Percentile Hausdorff Distance modifies this
definition to focus on the 95th percentile of the distances
rather than the maximum distance:

H95(A,B) = max (HD95(A,B),HD95(B,A)) (12)

where HD95(A,B) is the 95th percentile of the distances
from each point in A to the closest point in B, and vice
versa for HD95(B,A).

4.2.4 ASD

The Average Surface Distance (ASD) is a commonly used
metric in image segmentation to evaluate the accuracy of
predicted segmentations by comparing them to the ground
truth. ASD provides a measure of how close the predicted
boundary is to the ground truth boundary by calculating the
average distance between the surfaces of the two segmenta-
tions.

4.3 Experiment Process

4.3.1 Introducing Pre-trained Model

At the outset, with a learning rate of 0.01 and labeled
samples comprising 10% of the total dataset, the results for
fmy metrics were in Table 1:

Metrics Dice (%) Jaccard (%) 95HD ASD

Initial Results 68.19 54.72 15.35 5.23

Table 1

The performance is very poor, mainly due to the com-
plexity of the model and the limited size of the dataset,
making it difficult for the model to receive effective training.

Afterwards, I decided to initialize the model parameters
with a pre-trained model, Swin-T, which was pre-trained
on ImageNet as Swin Transformer. The training results
were as expected, and the performance showed a significant
improvement in Table 2

Metrics Dice (%) Jaccard (%) 95HD ASD

After Loading Swin-T 84.83 74.62 4.42 1.36

Table 2

Fig. 4 and Fig. 5 display the training loss curve and the
validation Dice performance curve, respectively.

Fig. 4: Training Loss

These curves show that during the training process,
the model’s parameter updates are not stable, resulting in
significant fluctuations.
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Fig. 5: Validation Dice Performance

Metrics Dice (%) Jaccard (%) 95HD ASD

After Grad Clipping 86.1 76.39 4.17 1.12

Table 3

4.3.2 Grad Clipping
I choose to implement gradient clipping, which helps mit-
igate the problem of exploding gradients during training
by imposing a threshold on the gradients.The performance
after training is as follows:

The performance of the model has been further im-
proved. However, there are still some issues during training.
Fig. 6 and Fig. 7 show training loss curve and the Dice curve
on the validation set for this training, respectively.

Fig. 6: Training Loss

Fig. 7: Validation Dice Performance

Fig. 6 and Fig. 7 indicate that the model’s performance
continues to improve on the training set, but on the valida-
tion set, the performance of the model starts to decline after
20k epochs, suggesting the occurrence of overfitting.

4.3.3 Attention Dropout
Subsequently, I conducted numerous experiments and em-
ployed various methods in an attempt to address the issues

present during training. However, none of these approaches
yielded satisfactory results. Upon reviewing the code, I
identified a critical issue related to parameter updates.
Specifically, the student model was being updated using
stochastic gradient descent (SGD), but during gradient com-
putation, the parameters of the teacher model were also
involved. This contradicted the original intention of the BCP
method.

I corrected the code and further utilized dropout to
mitigate the issue of overfitting.

The dropout strategies employed in the Swin-Unet
model include:

1) Applying dropout to the MLP within the FFN sec-
tion.

2) Applying dropout after computing the similarity
between the query and key during the attention
calculation.

3) Applying dropout on the main path prior to adding
it with the residual connection.

In the Swin-Unet model, the default setting for the
Path Drop Rate is 0.1. Given that dropout in the MLP
section is expected to significantly impact the training ef-
fectiveness of the model, I conducted multiple experiments
focusing specifically on dropout related to attention mech-
anisms. The experimental results are presented in Table
4, where ’ad’ refers to ’attn drop rate’, and ’pd’ refers to
’path drop rate’.

Hyperparameter Dice (%) Jaccard (%) 95HD ASD

0.3ad+0.1pd 87.2 78.12 3.12 1.02
0.4ad+0.1pd 86.6 77.19 2.65 0.85
0.2ad+0.1pd 86.14 76.52 4.12 1.42
0.1pd 85.83 76.04 3.58 1.06

Table 4. Attention Dropout Results

In my experiments, the optimal performance was
achieved when the Attention Drop Rate was set to 0.3. The
corresponding curves from this experiment are presented in
Fig. 8 and Fig. 9.

Fig. 8: Training Loss

According to Fig. 8 and Fig. 9, it is evident that during
the final 5k training epochs, the model exhibited minimal
improvement on the training set and even demonstrated
a decline in performance on the validation set. This phe-
nomenon can be attributed to unstable parameter updates
and oscillating loss values.
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Fig. 9: Validation Dice Performance

4.3.4 More Hyperparameter Optimization
To mitigate the issue of oscillating loss values observed
during training, I first considered reducing the learning rate.
By lowering the learning rate, I aim to achieve more stable
parameter updates and smoother convergence, ultimately
leading to improved model performance. The experimental
results of adjusting the learning rate are shown in the Table
5, where ’lr’ refers to learning rate.

Hyperparameter Dice (%) Jaccard (%) 95HD ASD

0.3ad+0.1pd+0.02lr 86.49 77.03 2.63 78.14
0.3ad+0.1pd+0.005lr 86.21 76.6 4.06 1.26
0.3ad+0.1pd+0.007lr 86.51 77.09 3.85 1.21
0.3ad+0.1pd+0.008lr 86.77 77.44 2.6 0.84
0.3ad+0.1pd+0.009lr 86.86 77.6 4.78 1.42
0.3ad+0.1pd+0.0085lr 86.47 76.99 3.88 1.15
0.3ad+0.1pd+0.0087lr 86.63 77.27 2.4 0.85
0.3ad+0.1pd+0.0086lr 86.68 77.35 4.01 1.19
0.3ad+0.1pd+0.015lr 85.7 75.98 4.82 1.53

Table 5. Results

However, issues of overfitting and underfitting still per-
sist. As shown in the Fig. 10, when the learning rate is
set to 0.0085, the model’s loss on the training set decreases
rapidly between 24k and 30k epochs. However, in Fig. 11,
the performance on the validation set does not improve,
indicating an overfitting issue.

Fig. 10: Training Loss

But when the learning rate is set to 0.0086, as shown in
the Fig. 12 and Fig. 13, the loss values once again exhibit os-
cillations, and there is no improvement in the performance
on the validation set.

I experimented with adjusting the dropout probability
of attention dropout, reducing its probability to aid in its
fitting. However, the model remains quite sensitive and
cannot find a balance between overfitting and oscillations.

Fig. 11: Validation Dice Performance

Fig. 12: Training Loss

The experimental results are shown in the following Table
6.

Hyperparameter Dice (%) Jaccard (%) 95HD ASD

0.15ad+0.1pd 85.79 76.09 3.55 1.2
0.18ad+0.1pd 86.31 76.85 3.15 1.07
0.19ad+0.1pd 86.43 76.97 3.64 1.24
0.195ad+0.1pd 86.6 77.21 3.58 0.96
0.197ad+0.1pd 86.4 76.92 2.63 0.87
0.196ad+0.1pd 86.41 76.92 3.14 0.93

Table 6. Training Loss curve

I also attempted dropout on the main path and MLP,
as well as experimenting with various combinations of
hyperparameters. The results are depicted in the following
Table 7, where ’d’ refers to drop rate.

Finally, I adjusted the weight decay coefficient and
achieved a satisfactory result. The results are as shown in
the following Table 8.

Fig. 13: Validation Dice Performance
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Hyperparameter Dice (%) Jaccard (%) 95HD ASD

0.3ad+0.05pd 86.23 76.7 3.54 1.04
0.3ad+0.08pd 85.74 76.01 3.53 1.22
0.3ad+0.085pd 86.29 76.78 3.46 1.16
0.3ad+0.083pd 86.35 76.89 3.65 1.13
0.3ad+0.084pd 86.06 76.5 4.04 1.31
0.3ad+0.084pd+0.0087lr 86.44 76.98 4.13 1.18
0.3ad+0.085pd+0.0087l 86.27 76.76 3.74 1.18
0.3d+0.1pd 85.32 75.41 3.2 1.11
0.2d+0.1pd 83.99 73.37 6 1.48
0.1d+0.1pd 85.6 75.87 4.43 1.4

Table 7. Results

Hyperparameter Dice (%) Jaccard (%) 95HD ASD

0.3ad+0.1pd+0wd 86.29 76.88 4.83 1.42
0.3ad+0.1pd+0.00001wd 86.66 77.23 3.02 0.96
0.3ad+0.1pd+0.00005wd 87.14 78.02 2.32 0.76
0.3ad+0.1pd+0.00009wd 86.36 76.77 3.44 1.08
0.3ad+0.1pd+0.00007wd 87.16 77.98 2.1 0.67
0.3ad+0.1pd+0.00008wd 85.84 76.19 4.19 1.23

Table 8. Results

5 RESULTS AND ANALYSIS

The comparison results of my model and other models are
illustrated in the Table 9.

Method Dice Jaccard 95HD ASD

UA-MT 81.65 70.64 6.88 2.02
SASSNet 84.50 74.34 5.42 1.86
DTC 84.29 73.92 12.81 4.01
URPC 83.10 72.41 4.84 1.53
MC-Net 86.44 77.04 5.50 1.84
SS-Net 86.78 77.67 6.07 1.40
BCP-UNet 88.76 80.39 3.88 1.28
Ours 87.16 77.98 2.10 0.67

Table 9. Results

While my model may not achieve the highest scores in all
metrics, its superior performance in 95HD and ASD metrics
indicates its effectiveness in accurately delineating bound-
aries and capturing the structural details of the objects of
interest. This suggests that my model may be particularly
well-suited for applications where precise delineation of
boundaries is crucial.

6 CONCLUSION

In conclusion, I utilized the Bidirectional Copy-Paste
method, based on Mean Teacher semi-supervised learning,
to train the Swin-Unet model on the ACDC dataset. Em-
ploying pre-training, various dropout techniques, weight
decay, and other training strategies, I improved the model’s
performance and achieved satisfactory results. I believe
that exploring pure attention-based networks in the semi-
supervised learning domain is meaningful. Attention-based
networks are often deep, and achieving good results with
limited labeled data can be challenging. Furthermore, this
process requires extensive analysis and experimentation,
which is advantageous for beginners like me to quickly
grasp the fundamental concepts and training techniques in
related fields.
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